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The severity of the malaria pandemic in the tropics is aggravated by the ongoing spread
of parasite resistance to antimalarial drugs and mosquito resistance to insecticides. A
strain of Anopheles gambiae, normally a major vector for human malaria in Africa, can
encapsulate and kill the malaria parasites within a melanin-rich capsule in the mosquito
midgut. Genetic mapping revealed one major and two minor quantitative trait loci (QTLs)
for this encapsulation reaction. Understanding such antiparasite mechanisms in mos-
quitoes may lead to new strategies for malaria control.

Melanotic encapsulation, an immune reac-
tion in which invading parasites are en-
closed and destroyed within a melanin-rich
capsule, is widespread among insects. Ma-
laria parasites, which must develop into
oocysts in the mosquito midgut, can also be
encapsulated in some refractory vector

strains, resulting in a block to disease trans-
mission (1). The mechanism of parasite
rejection is a key to the biology of interac-
tion between Plasmodium and its vector,
and an understanding of this mechanism
may ultimately be useful in malaria control
strategies such as mosquito population re-
placement using robust refractory strains.

Fully refractory and susceptible strains of
A. gambiae have been selected for the abil-
ity to encapsulate or tolerate, respectively,
oocysts of Plasmodium cynomolgi, a simian
parasite. These strains respond similarly to
most Plasmodium species, including the hu-
man pathogen P. falciparum (1). Many dif-

L. Zheng, R. Wang, H. Erfle, H. Voss, W. Ansorge, F. C.
Kafatos, European Molecular Biology Laboratory, Meyer-
hofstrasse 1, 69117 Heidelberg, Germany.
A. J. Cornel and F. H. Collins, Centers for Disease Control
and Prevention, 4770 Buford Highway, Mail Stop F22,
Chamblee, GA 30341, USA.

*To whom correspondence should be addressed. E-mail:
fhc1@cdc.gov

REPORTS

http://www.sciencemag.org z SCIENCE z VOL. 276 z 18 APRIL 1997 425



ferent paracentric chromosomal inversions
are present in A. gambiae from both natural
and laboratory-adapted strains (2). The pre-
viously described strains differ by a large
paracentric inversion (2La) covering poly-
tene divisions 23 through 26 of the left arm
of chromosome 2. Refractoriness and sus-
ceptibility to P. cynomolgi B have been as-
sociated with the 2L1a/1a and 2La/a
karyotypes, respectively (3). To avoid the
expected suppression of recombination by
inversion polymorphism and to facilitate
genetic analysis, we selected new refractory
and susceptible strains bearing the same
2L1a/1a arrangement (4). Their reciprocal
crosses yielded generally refractory F1 fe-
male progeny; backcrosses (BCs) of recipro-
cal F1 progeny revealed no sex-linked ge-
netic component to parasite encapsulation
(5). The BC of F1 to the refractory strain
produced progeny that were all highly re-

fractory (Fig. 1A), indicating a dominant
effect of the refractory allele (or alleles) of
the loci involved (6).

BCs to the susceptible strain generated
seven families (E1 through E7), with 19,
34, 36, 36, 25, 29, and 31 BC female
progeny, that were blood-fed with infected
P. cynomolgi B and then scored individu-
ally for intensity of infection and for en-
capsulation phenotype. Most of the BC
progeny were either refractory or suscepti-
ble, which suggested that a single genetic
locus is the major determinant of the en-
capsulation response (Fig. 1B). By con-
trast, the intensity of infection (normal
plus encapsulated parasites) in the BC
progeny varied broadly, which suggested
that there is no simple genetic component
of inheritance (Fig. 1C).

The microsatellite markers shown in Fig.
2 were heterozygous in the F1 female parent

and thus genetically informative. The
marker genotypes in families E1 to E5 were
correlated with the encapsulation pheno-
types (7, 8) by means of Mapmaker/QTL
(9, 10). When these five families were an-
alyzed together, two QTLs were identified
(Fig. 2). The major one (Pen1, for Plasmo-
dium encapsulation 1) was identified near
marker H175, with a combined LOD score
of 22.7 that explains ;54% of the trait. A
minor QTL (Pen2) was also identified near
marker H758, with a LOD score of 4.1 that
explains ;13% of the trait. By correlation
of the genetic and cytogenetic maps with a
subset of markers mapped by in situ hybrid-
ization to the polytene chromosomes (2, 5,
7), Pen1 is probably located in division 8 of
the right arm of chromosome 2 (2R), where-
as Pen2 is in or near division 43 of the left
arm of chromosome 3 (3L). Progressively
decreasing LOD scores in regions of the same

Fig. 1. Encapsulation of P. cynomolgi B is domi-
nant and is controlled by a major locus. Distribu-
tions of traits are shown for BC female progeny
from one family backcrossed to the refractory line
(R/S 3 R/R) (A) and from the seven families back-
crossed to the susceptible line (R/S3 S/S) (B and
C). Mosquitoes showing no infection could not be
represented in (A) and (B) (7 and 18, respectively);
they are shown as a white bar in (C).

Fig. 2.QTLs controlling the encapsulation response to P. cynomolgi B. The genetic map was generated
by genotyping 150 progeny from families E1 to E5. A few closely linked markers appeared in an order
different from that in the standard map (7 ). Asterisks indicate locations of the encapsulation QTLs; ■
indicates a marginal peak in the infection LOD score (see Table 1). The approximate locations of the
centromeres (C) and the arms of each chromosome (R, right; L, left) are labeled. Noninformative
microsatellite markers are not shown.
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chromosome away from each QTL are ex-
pected because of linkage. Secondary peaks
were also observed, which, if significant,
might indicate additional QTLs. There-
fore, the whole genome was rescanned, with

Pen1 and Pen2 both fixed (that is, assuming
the presence of these two QTLs and map-
ping the residual variation). This revealed
only one additional significant QTL, Pen3,
which is near marker H135 about 45 centi-

morgans (cM) from marker H175 and prob-
ably near division 14 on 2R. The total con-
tribution from these three QTLs amounted
to 70% of the trait. By contrast, the X chro-
mosome showed no influence on the refrac-
toriness phenotype (Fig. 2).

Both the refractory and susceptible
strains are polymorphic for the 2Rbc in-
version, which encompasses polytene di-
visions 11B through 14A, and could affect
the data for Pen3. We controlled for this
variable by monitoring a nearby visible
marker, collarless (4, 6). All F1 females
were chosen to be c/c. Moreover, we rean-
alyzed data pooled from families derived
from the same type of susceptible BC fa-
ther, C/C (families E2, E3, and E6) or C/c
(families E1, E4, and E5). In both cases,
Pen3 was identified, linked most closely
with either H135 or the next available
marker, H770. Similarly, Pen3 was identi-
fied near H135 in family E7, which was
derived from a c/c BC father and was
analyzed using selected microsatellite
markers. Thus, it is unlikely that the 2Rbc
inversion polymorphism explains any of
the QTLs. Analysis of all seven families
combined yielded similar results (Table
1). Pen1 was located 1.5 cM from H175
(LOD 5 36.0) and contributed 60% of the
trait; Pen2 was mapped 8.0 cM from H758
and contributed 19%. Pen3 was identified
4.0 cM from H135 when either Pen1 alone
or Pen1 and Pen2 were fixed. The com-
bined actions of Pen1, Pen2, and Pen3
appeared to control 76% of the trait.

These results were further validated by
examining the distribution of infection
and encapsulation phenotypes of genotyp-
ically sorted progeny (Fig. 3). Heterozy-
gosity (the presence at marker H175 of an
allele derived from the refractory parent)
conferred a certain degree of phenotypic
refractoriness; the combined effect of re-
fractory markers at all three loci was much
stronger. Conversely, homozygosity (the
absence of a refractory allele at these loci)
resulted in mosquitoes that were com-
pletely, or in a few individuals almost
completely, susceptible.

In contrast, no QTL was identified for
the intensity of infection, except for a small
peak (LOD 5 2.38; 6% variance explained)
near markerH769 on chromosome 2 (Table
1). None of the refractoriness QTLs con-
trolled the intensity of infection by P. cyno-
molgi B. Moreover, only a marginal devia-
tion from the expected 1:1 ratio of homozy-
gosity to heterozygosity in the BC progeny
was observed, between but not at Pen1 and
Pen3 (Table 1). This observation suggested
that the QTLs were detrimental only to the
parasites, not to the mosquito itself.

A genetic region that includes Pen1 has
been shown (11) to be involved in the

Fig. 3. In combination, the three QTLs control virtually completely the refractoriness to P. cynomolgi B.
The numbers of normal and encapsulated oocysts in each mosquito are represented. Symbols F and
} indicate homozygosity and heterozygosity, respectively, for the susceptible-derived allele only at
marker H175 (upper panels) or at markers H175, H135, and H758 (lower panels). Note the substantial
effect of the H175 genotype alone (upper left versus upper right panel) and the additive effects of H135
and H758 (upper versus lower panels).

Table 1. Pen1, Pen2, and Pen3 control the ability to encapsulate P. cynomolgi B oocysts. The
underlined markers map closest to the three encapsulation QTLs; the boldface marker indicates a
marginal peak in the infection LOD score (see Fig. 2). Numbers of progeny (out of 210 total from families
E1 to E7) successfully genotyped for each marker and of progeny homozygous for the susceptible-
derived alleles were subjected to a x2 test; significant deviations from the expected 1:1 ratio are
indicated. Some genotypings failed for technical reasons; the E7 maternal parent was uninformative for
marker H788.

Marker
Number of
genotyped
progeny

Number of
homozygous
progeny

x2

(df 5 1)

LOD score
(encap-
sulation)

LOD score
(number of
parasites)

Chromosome 2
H784b 208 102 0.08 21.56 0.38
H793 208 90 3.77 26.33 0.63
H427 210 91 3.73 24.30 0.40
H290 209 85 7.28† 30.99 1.32
H175 206 91 2.80 34.17 0.61
H788 177 73 5.43 28.51 1.34
H157 210 85 7.62† 26.49 1.17
H791 209 86 6.55* 20.61 2.12
H769 208 85 6.94† 24.41 2.38
R011 210 87 6.17* 24.90 2.02
H187 210 85 7.62† 21.32 2.23
H757 210 86 6.88† 22.06 1.92
H135 210 92 3.22 15.67 1.20
H770 209 97 1.08 12.38 1.43
H603 210 94 2.30 0.20 1.77

Chromosome 3
H758 204 107 0.49 5.91 0.00
H154 210 109 0.30 1.57 0.36
H127 210 106 0.02 4.19 0.62
H750 210 99 0.69 4.29 0.70
H158 209 104 0.00 2.61 0.70

*0.025 . P . 0.010. †0.010 . P . 0.005.
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melanotic coating of abiotic Sephadex
beads injected into the mosquito thorax
(12). Interestingly, neither parasite nor
bead encapsulation mapping experiments
identified any locus within the 2La region.
The reported association of 2L1a with re-
fractoriness (3) may be an artifact of the
previously available strains (for example, a
result of suppression of recombination). It is
also possible that a locus within the 2La
region is required for the expression of Pen1,
Pen2, and Pen3 but is not directly involved
in encapsulation. The new strains are both
2L1a/1a and may already carry the same
permissive allele at this locus.

Melanotic encapsulation is only one of
several types of refractoriness of anopheline
mosquitoes to Plasmodium parasites (13).
Another common type is manifested earlier,
before or during parasite invasion of the
midgut epithelium (14). Two QTLs each
have been identified for the susceptibility of
Aedes aegypti mosquitoes to P. gallinaceum
(15) and Brugian worms (16). However,
these Ae. aegyptiQTLs control the intensity
of parasite infection and thus differ from the
Pen loci of A. gambiae. Hence, our results
establish that the development of malaria
parasites can be blocked by two indepen-
dent refractory mechanisms that are both
temporally and functionally different.

The nature of Pen1, Pen2, and Pen3 is
not known, although Pen3 maps in the
general area where the prophenoloxidase
gene is also located (17). In any case, the
detailed localization of genes involved in
the A. gambiae encapsulation response of-
fers the opportunity to clone these genes
positionally and to characterize the anti-
parasitic immune response of this vector at
both the genetic and molecular levels.
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The glycosphingolipid (GSL) lysosomal storage diseases result from the inheritance of
defects in the genes encoding the enzymes required for catabolism of GSLs within
lysosomes. A strategy for the treatment of these diseases, based on an inhibitor of GSL
biosynthesis N-butyldeoxynojirimycin, was evaluated in a mouse model of Tay-Sachs
disease. When Tay-Sachs mice were treated with N-butyldeoxynojirimycin, the accu-
mulation of GM2 in the brain was prevented, with the number of storage neurons and the
quantity of ganglioside stored per cell markedly reduced. Thus, limiting the biosynthesis
of the substrate (GM2) for the defective enzyme (b-hexosaminidase A) prevents GSL
accumulation and the neuropathology associated with its lysosomal storage.

The GSL storage diseases (1) result from
the inheritance of defects in the genes en-
coding the catabolic enzymes required for
the complete breakdown of GSLs within

lysosomes. Possible strategies for the treat-
ment of these debilitating and often fatal
diseases include enzyme replacement thera-
py, gene therapy, substrate deprivation, al-
logeneic bone marrow transplantation, and
palliative measures (2). Of these, sympto-
matic management is the only approach for
treating most of these disorders, although
transplantation techniques have been ap-
plied to some of these diseases. Currently,
only the type 1 form of Gaucher disease,
which is characterized by glucocerebrosi-
dase deficiency in the absence of neuropa-
thology, has been successfully treated by
enzyme replacement therapy (3, 4). How-
ever, skeletal abnormalities associated with
the disease respond slowly to this treatment
(4), and the neuropathologic forms of the
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